

SET ~

रोल नं. Roll No.

प्रश्न-पत्र कोड	
Q.P. Code	55/3/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें। Candidates must write the Q.P. Code on the title page of the answer-book. *

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

निर्धारित समय : 3 घण्टे

Time allowed : 3 hours

अधिकतम अंक : 70 Maximum Marks : 70

नोट / NOTE :

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं ।
 Please check that this question paper contains 23 printed pages.
- (ii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।

Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।

Please check that this question paper contains 35 questions.

(iv) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।

Please write down the serial number of the question in the answer-book before attempting it.

(v) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

55/3/2

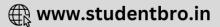
Page 1 of 23

P.T.O.

सामान्य निर्देशः

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है क, ख, ग, घ एवं ङ /
- (iii) खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय (MCQ) प्रकार के एक-एक अंक के प्रश्न हैं।


- (iv) खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के दो-दो अंकों के प्रश्न हैं ।
- (v) खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय (SA) प्रकार के तीन-तीन अंकों के प्रश्न हैं।
- (vi) खण्ड घ में प्रश्न संख्या 31 से 33 तक दीर्घ-उत्तरीय (LA) प्रकार के पाँच-पाँच अंकों के प्रश्न हैं ।
- (vii) खण्ड ङ में प्रश्न संख्या 34 तथा 35 केस-आधारित चार-चार अंकों के प्रश्न हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है । यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश्नों में, खण्ड घ के 3 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है ।
- (ix) कैल्कुलेटर का उपयोग **वर्जित** है। भौतिक नियतांकों के निम्नलिखित मान, आवश्यकता अनुसार उपयोग करें :

$$\begin{split} \mathbf{c} &= 3 \times 10^8 \text{ m/s} \\ \mathbf{h} &= 6 \cdot 63 \times 10^{-34} \text{ Js} \\ \mathbf{e} &= 1 \cdot 6 \times 10^{-19} \text{ C} \\ \mu_0 &= 4\pi \times 10^{-7} \text{ T m A}^{-1} \\ \epsilon_0 &= 8 \cdot 854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \\ \frac{1}{4\pi\epsilon_0} &= 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{c}} \\ \mathbf{\hat{e}} \\ \mathbf{\hat{c}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{r}} \\ \mathbf{\hat{s}} \\ \mathbf{\hat{s$$

55/3/2

Page 2 of 23

General Instructions:

Read the following instructions very carefully and strictly follow them :

- This question paper contains **35** questions. All questions are compulsory. (i)
- This question paper is divided into five Sections A, B, C, D and E. (ii)
- (iii) In Section A – Questions no. 1 to 18 are Multiple Choice (MCQ) type questions, carrying 1 mark each.
- In Section B Questions no. 19 to 25 are Very Short Answer (VSA) type (iv)questions, carrying 2 marks each.
- In Section C Questions no. 26 to 30 are Short Answer (SA) type questions, (v)carrying 3 marks each.
- In Section D Questions no. 31 to 33 are Long Answer (LA) type questions (vi)carrying 5 marks each.
- In Section E Questions no. 34 and 35 are case-based questions carrying (vii) 4 marks each.
- There is no overall choice. However, an internal choice has been provided in (viii) 2 questions in Section B, 2 questions in Section C, 3 questions in Section D and 2 questions in Section E.
- Use of calculators is **not** allowed. (ix)

Use the following values of physical constants, if required :

c =
$$3 \times 10^8$$
 m/s
h = $6 \cdot 63 \times 10^{-34}$ Js
e = $1 \cdot 6 \times 10^{-19}$ C
 $\mu_0 = 4\pi \times 10^{-7}$ T m A⁻¹
 $\epsilon_0 = 8 \cdot 854 \times 10^{-12}$ C² N⁻¹ m⁻²
 $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9$ N m² C⁻²
Mass of electron (m_e) = $9 \cdot 1 \times 10^{-31}$ kg
Mass of neutron = $1 \cdot 675 \times 10^{-27}$ kg
Mass of proton = $1 \cdot 673 \times 10^{-27}$ kg
Avogadro's number = $6 \cdot 023 \times 10^{23}$ per gram mole
Boltzmann constant = $1 \cdot 38 \times 10^{-23}$ JK⁻¹
Page 3 of 23

55/3/2

CLICK HERE

>>>

P.T.O.

🕀 www.studentbro.in

Get More Learning Materials Here :

खण्ड क

1. किसी वोल्टता सिग्नल का किसी चक्र के लिए वर्णन इस प्रकार किया गया है :

 $v = V_0$ $0 \le t \le \frac{T}{2}$ के लिए= 0 $\frac{T}{2} \le t \le T$ के लिए

इसका rms मान है :

- (a) $\frac{V_0}{\sqrt{2}}$
- $(b) V_0$
- $(c) \qquad \frac{V_0}{2}$
- $(d) \qquad \sqrt{2} \ V_0$
- 2. बोर के मॉडल में हाइड्रोजन के स्पेक्ट्रम की बामर श्रेणी में उत्सर्जित प्रकाश की अधिकतम आवृत्ति और निम्नतम आवृत्ति का अनुपात होता है :
 - (a) $\frac{11}{9}$
 - (b) $\frac{9}{5}$

(c)
$$\frac{11}{7}$$

(d) $\frac{16}{7}$

- 3. किसी नैज अर्धचालक में किसी निश्चित ताप पर इलेक्ट्रॉनों और विवरों की सांद्रता 1.5 × 10¹⁶ m⁻³ है । जब इसे त्रिसंयोजक अपमिश्रक से मादित किया जाता है, तो विवर सांद्रता बढ़कर 4.5 × 10²² m⁻³ हो जाती है । मादित अर्धचालक में इलेक्ट्रॉनों की सांद्रता (n_e) होगी :
 - (a) $3 \times 10^6 \text{ m}^{-3}$
 - (b) $5 \times 10^7 \text{ m}^{-3}$
 - (c) $5 \times 10^9 \text{ m}^{-3}$
 - (d) $6.75 \times 10^{38} \text{ m}^{-3}$

55/3/2

Page 4 of 23

Get More Learning Materials Here : 💻

SECTION A

1. A voltage signal is described by :

$$\begin{split} v &= V_0 \qquad for \ 0 \leq t \leq \frac{T}{2} \\ &= 0 \qquad for \ \frac{T}{2} \leq t \leq T \end{split}$$

for a cycle. Its rms value is :

- (a) $\frac{V_0}{\sqrt{2}}$ (b) V_0 (c) $\frac{V_0}{2}$
- (d) $\sqrt{2} V_0$
- 2. The ratio of maximum frequency and minimum frequency of light emitted in Balmer series of hydrogen spectrum, in Bohr's model is :
 - (a) $\frac{11}{9}$ (b) $\frac{9}{5}$ (c) $\frac{11}{7}$ (d) $\frac{16}{7}$
- 3. At a certain temperature in an intrinsic semiconductor, the electrons and holes concentration is 1.5×10^{16} m⁻³. When it is doped with a trivalent dopant, hole concentration increases to 4.5×10^{22} m⁻³. In the doped semiconductor, the concentration of electrons (n_e) will be :
 - (a) $3 \times 10^6 \text{ m}^{-3}$
 - (b) $5 \times 10^7 \text{ m}^{-3}$
 - $(c) \qquad 5\times 10^9 \ m\text{--}3$
 - (d) $6.75 \times 10^{38} \text{ m}^{-3}$

55/3/2

Page 5 of 23

CLICK HERE

≫

P.T.O.

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

 $3.08 \times 10^{-15} \text{ Cm}^{-1}$

 $1.0 \times 10^{-9} \text{ Cm}^{-1}$ $1.0 \times 10^{-7} \text{ Cm}^{-1}$ (d) (c) किसी नैज अर्धचालक की 0 K पर प्रतिरोधकता होती है : 5. 0°C पर प्रतिरोधकता के समान 300 K पर प्रतिरोधकता के समान (b) (a) (c) शून्य (d) अनन्त कार्य फलन $2\cdot 14~{
m eV}$ की किसी धातु पर आवृत्ति $6\cdot 4 imes 10^{14}~{
m Hz}$ का प्रकाश आपतन कर 6. रहा है । उत्सर्जित इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा होगी लगभग : (a) 0.25 eV(b) 0.51 eV(c) 1.02 eV(d) 0.10 eVप्रकाश-विद्युत प्रभाव के किसी प्रयोग में, आवृत्ति v को समान रखते हुए आपतित विकिरणों 7. की तीव्रता में वृद्धि की जाती है । उत्सर्जित प्रकाश-इलेक्ट्रॉनों की संख्या : बढ़ जाएगी (a) (b) घट जाएगी आवृत्ति पर निर्भर करेगी समान रहेगी (d) (c) आवेश वाहकों की गतिशीलता का SI मात्रक है : 8. $m^2 V^{-1} s^{-1}$ $\Omega \, \mathrm{s}^{-1}$ (a) (b) $m s^{-1} V^{-1}$ (c) (d) Ωm कोई प्रेरक, कोई संधारित्र और कोई प्रतिरोधक श्रेणी में किसी ac वोल्टता स्रोत के सिरों से 9. संयोजित हैं । यदि स्रोत की आवृत्ति को धीरे-धीरे घटाया जाए, तो : प्रेरक और संधारित्र दोनों के प्रतिघात घटते हैं । (a) प्रेरक का प्रतिघात घटता है और संधारित्र का प्रतिघात बढ़ता है । (b) प्रेरक और संधारित्र दोनों के प्रतिघात बढ़ते हैं । (c) प्रेरक का प्रतिघात बढता है और संधारित्र का प्रतिघात घटता है । (d) 55/3/2 Page 6 of 23 **CLICK HERE** ≫ Get More Learning Materials Here : 🕀 www.studentbro.in

कोई अनन्त लम्बाई का एकसमान आवेशित तार $1.0~{
m cm}$ की दूरी पर $18 imes 10^4~{
m NC^{-1}}$ का

(b)

विद्युत क्षेत्र उत्पन्न करता है । तार पर रैखिक आवेश घनत्व है :

 $1{\cdot}12\times10^{-14}~\mathrm{Cm}^{-1}$

4.

(a)

- 4. An infinitely long uniformly charged wire produces an electric field of $18 \times 10^4 \text{ NC}^{-1}$ at a distance of 1.0 cm. The linear charge density on the wire is :
 - (a) $1.12 \times 10^{-14} \text{ Cm}^{-1}$ (b) $3.08 \times 10^{-15} \text{ Cm}^{-1}$
 - (c) $1.0 \times 10^{-9} \text{ Cm}^{-1}$ (d) $1.0 \times 10^{-7} \text{ Cm}^{-1}$
- 5. At 0 K, the resistivity of an intrinsic semiconductor is :
 - (a) same as that at 0° C (b) same as that at 300 K
 - (c) zero (d) infinite
- 6. Light of frequency 6.4×10^{14} Hz is incident on a metal of work function 2.14 eV. The maximum kinetic energy of the emitted electrons is about :
 - $(a) \qquad 0{\cdot}25 \; eV$
 - $(b) \qquad 0{\cdot}51 \; eV$
 - $(c) \qquad 1{\cdot}02 \; eV$
 - $(d) \qquad 0{\cdot}10 \ eV$
- **7.** In an experiment on photoelectric effect, the intensity of incident radiation is increased, keeping the frequency *v* the same. The number of photoelectrons emitted will :
 - (a) increase (b) decrease
 - (c) remain same (d) depend on frequency
- 8. The SI unit of mobility of charge carriers is :
 - (a) Ωs^{-1} (b) $m^2 V^{-1} s^{-1}$ (c) $m s^{-1} V^{-1}$ (d) Ωm
- **9.** An inductor, a capacitor and a resistor are connected in series across an ac source of voltage. If the frequency of the source is decreased gradually, the reactance of :
 - (a) both the inductor and the capacitor decreases.
 - (b) inductor decreases and the capacitor increases.
 - (c) both the inductor and the capacitor increases.
 - (d) inductor increases and the capacitor decreases.

55/3/2

Page 7 of 23

P.T.O.

- 10. किसी चल कुण्डली गैल्वैनोमीटर में, कुण्डली पर कार्यरत विक्षेपक बल-आघूर्ण τ कुण्डली में प्रवाहित धारा I से किस प्रकार संबंधित होता है ?
- 11. प्रकाश के तरंग चित्रण में, प्रकाश की तीव्रता I और तरंग के आयाम A के बीच के संबंध को इस प्रकार दर्शाया जाता है :
 - (a) I $\propto \sqrt{A}$
 - (b) I \propto A
 - (c) I $\propto A^2$
 - $(d) \qquad I \ \propto \frac{1}{A^2}$
- 12. कुछ मीटर कोटि की तरंगदैर्ध्य की विद्युत-चुम्बकीय तरंगें सर्वप्रथम प्रयोगशाला में किसके द्वारा उत्पन्न और संसूचित की गई थीं ?
 - (a)जे.सी. मैक्सवेल(b)जे.सी. बोस(c)एच.आर. हर्ट्ज़(d)जी. मार्कोनी
- 13. किसी सेल का वि.वा. बल (emf) और आन्तरिक प्रतिरोध क्रमश: E और r हैं । इसे किसी R = 2r के बाह्य प्रतिरोध से संयोजित किया गया है । इस सेल के टर्मिनलों के बीच विभव पात क्या होगा ?
 - (a) $\frac{E}{4}$ (b) $\frac{E}{2}$ (c) $\frac{2}{3}E$ (d) $\frac{E}{3}$
- 14. किसी एकल-झिरी विवर्तन प्रयोग में, झिरी की चौड़ाई आधी कर दी जाती है । विवर्तन पैटर्न में केंद्रीय उच्चिष्ठ की चौड़ाई हो जाएगी :
 - (a) आधी
 - (b) दुगुनी
 - (c) चार गुनी
 - (d) एक-चौथाई

55/3/2

Page 8 of 23

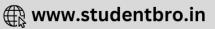
Get More Learning Materials Here :

- 10. In a moving coil galvanometer, the deflecting torque τ acting on the coil is related to the current I flowing through it as :
 - (a) $\tau \propto I^3$ (b) $\tau \propto I^2$ (c) $\tau \propto I$ (d) $\tau \propto \sqrt{I}$
- **11.** In the wave picture of light, the intensity I of light is related to the amplitude A of the wave as :
 - (a) I $\propto \sqrt{A}$
 - (b) $I \propto A$
 - (c) I $\propto A^2$
 - $(d) ~~I~\propto \frac{1}{A^2}$
- **12.** Electromagnetic waves of wavelength of the order of a few meters were first produced and detected in the laboratory by :

(a)	J.C. Maxwell	(b)	J.C. Bose
(c)	H.R. Hertz	(d)	G. Marconi

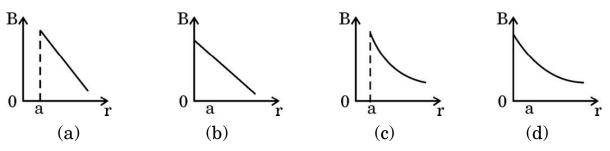
13. The emf and internal resistance of a cell are E and r respectively. It is connected across an external resistance R = 2r. The potential drop across the terminals of the cell will be :

(a)	$\frac{\mathrm{E}}{4}$	(b)	$rac{\mathrm{E}}{2}$
(c)	$\frac{2}{3}E$	(d)	$\frac{\mathrm{E}}{3}$


- **14.** In a single-slit diffraction experiment, the width of the slit is halved. The width of the central maximum, in the diffraction pattern, will become :
 - (a) half
 - (b) twice
 - (c) four times
 - (d) one-fourth

55/3/2

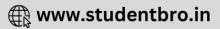
Page 9 of 23


P.T.O.

Get More Learning Materials Here : 💻

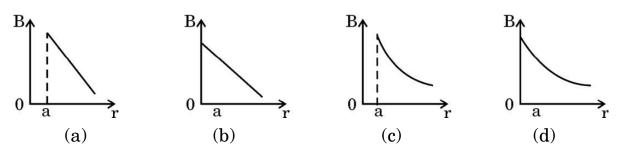
15. निम्नलिखित में से कौन-सा ग्राफ किसी त्रिज्या 'a' के अनन्त लम्बाई के धारावाही सीधे तार के केन्द्र से दूरी 'r' को फलन मानकर उसके बाहर के चुम्बकीय क्षेत्र के परिमाण के विचरण का सही निरूपण करता है ?

प्रश्न संख्या 16 से 18 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं । दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए ।


- (a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है ।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है और कारण (R) भी ग़लत है।
- 16. अभिकथन (A): जब किसी वृत्ताकार पाश, जिससे कोई स्थायी धारा प्रवाहित हो रही है, की त्रिज्या दुगुनी की जाती है, तो उसका चुम्बकीय आघूर्ण चार गुना हो जाता है।
 - *कारण (R) :* किसी वृत्ताकार पाश, जिससे कोई स्थायी धारा प्रवाहित हो रही है, का चुम्बकीय आधूर्ण उस पाश के क्षेत्रफल के समानुपाती होता है ।
- **17.** *अभिकथन* (A) : नाभिक ${}^{4}_{3}Y$ की अपेक्षा नाभिक ${}^{7}_{3}X$ अधिक स्थायी है । *कारण* (R) : ${}^{7}_{3}X$ में प्रोटॉनों की संख्या अधिक है ।
- 18. अभिकथन (A): किसी सेल का आन्तरिक प्रतिरोध नियत रहता है।
 कारण (R): उपयोग करते समय सेल के विद्युत-अपघट्य की आयनी सांद्रता समान रहती है।

55/3/2

Page 10 of 23


Get More Learning Materials Here : 📒

15. Which of the following graphs correctly represents the variation of the magnitude of the magnetic field outside a straight infinite current carrying wire of radius 'a', as a function of distance 'r' from the centre of the wire ?

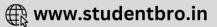
Questions number 16 to 18 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false and Reason (R) is also false.
- **16.** Assertion (A) : When radius of a circular loop carrying a steady current is doubled, its magnetic moment becomes four times.

Reason (R): The magnetic moment of a circular loop carrying a steady current is proportional to the area of the loop.

- **17.** Assertion (A): The nucleus $\frac{7}{3}X$ is more stable than the nucleus $\frac{4}{3}Y$. Reason (R): $\frac{7}{3}X$ contains more number of protons.
- 18. Assertion (A): The internal resistance of a cell is constant.
 Reason (R): Ionic concentration of the electrolyte remains same during

use of a cell.


55/3/2

Page **11 of 23**

P.T.O.

Get More Learning Materials Here : 📕

खण्ड ख

- किसी p-n संधि डायोड के हासी स्तर की चौड़ाई किस प्रकार प्रभावित होती है जब यह 19. (i) अग्रदिशिक बायसित, और (ii) पश्चदिशिक बायसित होता है ? अपने उत्तर की पुष्टि कीजिए। 2किसी p-n संधि के उस गुण की व्याख्या कीजिए जो इसे प्रत्यावर्ती वोल्टताओं के दिष्टकरण 20. के लिए उपयुक्त बनाता है । पूर्ण-तरंग दिष्टकारी और अर्ध-तरंग दिष्टकारी के बीच विभेदन कीजिए। 2द्रव्यमान संख्या A को फलन मानकर बंधन ऊर्जा प्रति न्यूक्लिऑन के विचरण को (क) 21. दर्शाने वाला ग्राफ खींचिए । भारी नाभिकों (A > 170) के लिए द्रव्यमान संख्या में वृद्धि होने पर बंधन ऊर्जा प्रति न्यूक्लिऑन घटती है । व्याख्या कीजिए । 2अथवा बोर अभिगृहीतों का उपयोग करते हुए, हाइड्रोजन परमाणु में nवीं स्थाई कक्षा की (ख) त्रिज्या का व्यंजक प्राप्त कीजिए। 2'विस्थापन धारा' से क्या तात्पर्य है ? संक्षेप में व्याख्या कीजिए कि यह धारा चालन धारा से 22. किस प्रकार भिन्न है। 2समान लम्बाई के दो तारों में से एक को वर्गाकार पाश और दुसरे को वृत्ताकार पाश की 23. आकृति में मोड़ा गया है । दोनों पाशों को किसी एकसमान चुम्बकीय क्षेत्र में निलंबित किया गया है । यह दर्शाइए कि समान धारा प्रवाहित करने पर, वृत्ताकार पाश अधिक बल-आधूर्ण का अनुभव करेगा । 2हाइगेन्स सिद्धान्त लिखिए । हाइगेन्स ने पश्च तरंग की अनुपस्थिति की व्याख्या किस 24. (क) प्रकार की ? 2अथवा हाइगेन्स सिद्धान्त का उपयोग करके (i) अवतल दर्पण, तथा (ii) उत्तल लेंस द्वारा (ख) किसी समतल तरंग का परावर्तन/अपवर्तन दर्शाइए । 2
- 25. दो माध्यमों A और B के अपवर्तनांक क्रमश: 2 और √2 हैं। इन दोनों के अन्तरापृष्ठ के लिए क्रांतिक कोण क्या है ?

55/3/2

Page **12 o**f **23**

CLICK HERE

≫

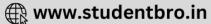
R www.studentbro.in

2

Get More Learning Materials Here : 📕

SECTION B

- 19. How is the width of depletion layer of a p-n junction diode affected when it is (i) forward biased, and (ii) reverse biased? Justify your answers. 220. Explain the property of a p-n junction which makes it suitable for rectifying alternating voltages. Differentiate between a half-wave and a full-wave rectifier. 221. Draw a graph showing the variation of binding energy per nucleon (a) as a function of mass number A. The binding energy per nucleon for heavy nuclei (A > 170) decreases with the increase in mass number. Explain. 2OR Using Bohr's postulates, obtain the expression for radius of nth (b) stable orbit in a hydrogen atom. 222. What is meant by the term 'displacement current'? Briefly explain how this current is different from a conduction current. 2Two wires of equal lengths are shaped in the form of a square loop and a 23. circular loop. Both loops are suspended in a uniform magnetic field. Prove that for the same current, the circular loop will experience larger torque. 224. State Huygens' principle. How did Huygens explain the absence of (a) the backwave? 2OR (b) Use Huygens' principle to show reflection/refraction of a plane wave by (i) concave mirror, and (ii) a convex lens. 2The refractive indices of two media A and B are 2 and $\sqrt{2}$ respectively. 25. What is the critical angle for their interface? 2
 - Page **13 o**f **23**


CLICK HERE

>>

P.T.O.

Get More Learning Materials Here : 💻

55/3/2

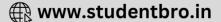
खण्ड ग

- 26. (क) द्रव्यमान m और आवेश q के किसी कण को विभवान्तर V से त्वरित किया गया है । विभवान्तर V को फलन मानकर इस कण से संबद्ध दे ब्रॉग्ली तरंगदैर्ध्य λ का ग्राफ आलेखित कीजिए ।
 - (ख) कोई इलेक्ट्रॉन, जिसे 400 V विभवान्तर से त्वरित किया गया है, द्वारा अर्जित ऊर्जा तथा इससे संबद्ध दे ब्रॉग्ली तरंगदैर्ध्य परिकलित कीजिए।
- 27. (क) किसी आदर्श संधारित्र के सिरों से कोई ac स्रोत v = v_m sin wt संयोजित है ।
 (i) परिपथ में प्रवाहित धारा, और (ii) संधारित्र के प्रतिघात के लिए व्यंजक व्युत्पन्न कीजिए । धारा i और wt के बीच ग्राफ आलेखित कीजिए ।

अथवा

- (ख) यदि किसी परिपथ में किसी ac वोल्टता स्रोत के सिरों से श्रेणी में कोई प्रेरक L, संधारित्र C और प्रतिरोधक R संयोजित हैं, तो परिपथ में औसत उपभुक्त शक्ति के लिए व्यंजक प्राप्त कीजिए । (i) परिशुद्ध प्रेरणिक परिपथ, और (ii) परिशुद्ध प्रतिरोधक परिपथ के लिए शक्ति गुणांक ज्ञात कीजिए ।
- 28. (क) (i) सिद्ध कीजिए कि सभी नाभिकों के लिए नाभिकीय घनत्व समान होता है।
 - (ii) किसी न्यूक्लिऑनों के युगल के पृथकन को फलन मानकर उस युगल की स्थितिज ऊर्जा का ग्राफ खींचिए । इस ग्राफ से दो निष्कर्ष निकालिए ।

अथवा


- (ख) (i) गाइगर-मार्सडेन प्रयोग में प्रकीर्णन कोण (θ) को फलन मानकर संसूचित
 प्रकीर्णित कणों की संख्या (Ν) के विचरण को दर्शाने के लिए आलेख (ग्राफ)
 खींचिए ।
 - (ii) इस आलेख से निकाले जाने वाले दो निष्कर्षों की संक्षेप में चर्चा कीजिए और लिखिए कि ये किस प्रकार परमाणु में नाभिक की खोज की ओर ले जाते हैं । 3

Page 14 of 23

CLICK HERE

≫

Get More Learning Materials Here : 💶 🦵 🤇

3

3

3

SECTION C

- 26. (a) A particle of mass m and charge q is accelerated through a potential difference V. Plot a graph of de Broglie wavelength λ associated with it as a function of V.
 - (b) Calculate the energy acquired by and de Broglie wavelength associated with, an electron accelerated through a potential difference of 400 V.
- 27. (a) An ac source $v = v_m \sin \omega t$ is connected across an ideal capacitor. Derive the expression for the (i) current flowing in the circuit, and (ii) reactance of the capacitor. Plot a graph of current i versus ωt .

OR

- (b) A series combination of an inductor L, a capacitor C and a resistor R is connected across an ac source of voltage in a circuit. Obtain an expression for the average power consumed by the circuit. Find power factor for (i) purely inductive circuit, and (ii) purely resistive circuit.
- **28.** (a) (i) Prove that the nuclear density is same for all nuclei.
 - (ii) Draw a plot of potential energy of a pair of nucleons as a function of their separation. Draw two inferences from this plot.

OR

- (b) (i) Draw a graph to show the variation of the number of scattered particles detected (N) in Geiger-Marsden experiment as a function of scattering angle (θ) .
 - (ii) Discuss briefly two conclusions that can be drawn from this graph and how they lead to the discovery of nucleus in an atom.

55/3/2

Page 15 of 23

3

3

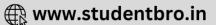
3

3

29. कोई आयताकार पाश जिसकी भुजाएँ 25 cm और 20 cm की हैं, x-y तल में रखा है । इस पाश पर कोई चुम्बकीय क्षेत्र B = (5t² + 2t + 10) k लगाया गया है, जहाँ B टेसला और t सेकण्डों में है । यदि पाश का प्रतिरोध 4 Ω है, तो t = 5 s पर पाश में प्रेरित वि.वा. बल (emf) और प्रेरित धारा ज्ञात कीजिए ।

- 30. प्रतिरोध R के किसी लोड प्रतिरोधक के सिरों पर कोई विभवान्तर 'V' अनुप्रयुक्त किया गया है । V और R में विचरण हो सकता है । यदि परिपथ में प्रवाहित धारा I है, तो निम्नलिखित को फलन मानकर प्रतिरोधक में उपभुक्त शक्ति के विचरण को दर्शाने के लिए ग्राफ खींचिए :
 - (क) V को नियत रखते हुए R
 - (ख) R को नियत रखते हुए I
 - (ग) R को नियत रखते हुए V

खण्ड घ


- (क) (i) किसी चल कुण्डली गैल्वैनोमीटर का सिद्धान्त लिखिए और इसकी क्रियाविधि
 की व्याख्या कीजिए । किसी गैल्वैनोमीटर का, उसके इसी रूप में, किसी
 परिपथ में धारा मापने के लिए उपयोग नहीं किया जा सकता है । क्यों ?
 - (ii) किसी चल कुण्डली गैल्वैनोमीटर में चुम्बकीय क्षेत्र अरीय क्यों बनाते हैं ? इसे किस प्रकार बनाया जाता है ?

अथवा

- (ख) (i) किसी धारावाही वृत्ताकार पाश के अक्ष पर चुम्बकीय क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए ।
 - (ii) प्रतिचुम्बकीय पदार्थ और अनुचुम्बकीय पदार्थ के बीच विभेदन करने वाले कोई दो बिन्दु लिखिए ।

Get More Learning Materials Here : 📕

Page 16 of 23

 $\boldsymbol{3}$

3

5

- **29.** A rectangular loop of sides 25 cm and 20 cm is lying in x-y plane. It is subjected to a magnetic field $\overrightarrow{B} = (5t^2 + 2t + 10)\hat{k}$, where B is in Tesla and t is in seconds. If the resistance of the loop is 4 Ω , find the emf induced and the induced current in the loop at t = 5 s.
- **30.** A potential difference 'V' is applied across a load resistor of resistance R. V and R can be varied. If the current that flows in the circuit is I, draw a plot showing the variation of power consumed by the resistor as a function of :
 - (a) R, keeping V constant
 - (b) I, keeping R constant
 - (c) V, keeping R constant

SECTION D

- **31.** (a) (i) Write the principle and explain the working of a moving coil galvanometer. A galvanometer as such cannot be used to measure the current in a circuit. Why ?
 - (ii) Why is the magnetic field made radial in a moving coil galvanometer ? How is it achieved ?

OR

- (b) (i) Derive an expression for magnetic field on the axis of a current carrying circular loop.
 - (ii) Write any two points of difference between a diamagnetic and a paramagnetic substance.

5

5

3

3

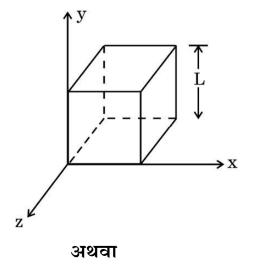
Get More Learning Materials Here :

Page 17 of 23

P.T.O.

- 32. (क) (i) वक्रता त्रिज्या 'R' के किसी अवतल दर्पण के सामने दूरी 'u' पर स्थित किसी बिम्ब के वास्तविक प्रतिबिम्ब के बनने को दर्शाने के लिए किरण आरेख खींचिए । इस प्रकार, u और R के पदों में प्रतिबिम्ब दूरी 'v' के लिए संबंध प्राप्त कीजिए ।
 - (ii) किसी 1 m फोकस दूरी के उत्तल लेंस के सामने 1.8 m लम्बाई का कोई
 व्यक्ति लेंस से 5 m की दूरी पर खड़ा है । बनने वाले प्रतिबिम्ब की स्थिति
 और ऊँचाई ज्ञात कीजिए ।

अथवा


- (i) किसी त्रिभुजाकार काँच के प्रिज़्म से गुज़रने वाली किसी प्रकाश किरण के अपवर्तन को दर्शाने के लिए किरण आरेख खींचिए । इस प्रकार, अपवर्तनांक (μ) के लिए प्रिज़्म कोण (A) और न्यूनतम विचलन कोण (δ_m) के पदों में संबंध प्राप्त कीजिए ।
 - (ii) किसी अवतल लेंस के दोनों पृष्ठों की वक्रता त्रिज्याएँ 20 cm हैं । यदि लेंस की क्षमता – 5.0 D है, तो लेंस के पदार्थ का अपवर्तनांक ज्ञात कीजिए ।

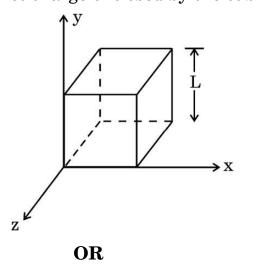
5

5

5

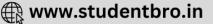
- 33. (क) (i) विद्युत फ्लक्स की परिभाषा दीजिए और इसका SI मात्रक लिखिए।
 - (ii) गाउस नियम का उपयोग करके किसी एकसमान रूप से आवेशित अनन्त समतल चादर के कारण विद्युत क्षेत्र के लिए व्यंजक प्राप्त कीजिए।

55/3/2



Page 18 of 23

- **32.** (a) (i) Draw a ray diagram showing the formation of a real image of an object placed at a distance 'u' in front of a concave mirror of radius of curvature 'R'. Hence, obtain the relation for the image distance 'v' in terms of u and R.
 - (ii) A 1.8 m tall person stands in front of a convex lens of focal length 1 m, at a distance of 5 m. Find the position and height of the image formed.


OR

- (b) (i) Draw a ray diagram showing refraction of a ray of light through a triangular glass prism. Hence, obtain the relation for the refractive index (μ) in terms of angle of prism (A) and angle of minimum deviation (δ_m).
 - (ii) The radii of curvature of the two surfaces of a concave lens are 20 cm each. Find the refractive index of the material of the lens if its power is -5.0 D.
- **33.** (a) (i) Define electric flux and write its SI unit.
 - (ii) Use Gauss' law to obtain the expression for the electric field due to a uniformly charged infinite plane sheet.
 - (iii) A cube of side L is kept in space, as shown in the figure. An electric field $\overrightarrow{E} = (Ax + B) \stackrel{\circ}{i} \frac{N}{C}$ exists in the region. Find the net charge enclosed by the cube.

Page **19 o**f **23**

CLICK HERE Get More Learning Materials Here :

5

5

- (ख) (i) किसी बिन्दु पर विद्युत विभव की परिभाषा दीजिए और इसका SI मात्रक लिखिए।
 - (ii) दो संधारित्र श्रेणी में संयोजित हैं । इस संयोजन की तुल्य धारिता के लिए
 व्यंजक व्युत्पन्न कीजिए ।
 - (iii) दो बिन्दु आवेश + q और q, x-y तल में क्रमश: बिन्दुओं (3a, 0) और
 (0, 4a) पर अवस्थित हैं । मूल-बिन्दु पर कोई तीसरा आवेश Q रखा है ।
 q और a के पदों में Q का वह मान ज्ञात कीजिए जिससे निकाय की स्थिर-वैद्युत स्थितिज ऊर्जा शून्य हो जाए ।

खण्ड ङ

34. किसी वस्तु के कोनों, जिनका आकार प्रकाश की तरंगदैर्ध्य के तुल्य हो, पर प्रकाश तरंग का मुड़ना प्रकाश का विवर्तन कहलाता है । विवर्तन वास्तव में किरण प्रकाशिकी की सीमाएँ परिभाषित करता है । प्रकाशिक यंत्रों के लिए सीमाएँ प्रकाश की तरंगदैर्ध्य द्वारा निर्धारित की जाती है । किसी एकल-झिरी के विवर्तन पैटर्न के प्रेक्षण के लिए कोई प्रायोगिक व्यवस्था बनायी जाती है ।

उपर्युक्त के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) यदि प्रकाश के तरंगदैर्ध्य में वृद्धि कर दी जाए, तो केन्द्रीय उच्चिष्ठ की चौड़ाई किस
 प्रकार प्रभावित होगी ?
- (ख) प्रथम निम्निष्ठ प्राप्त करने की क्या शर्त है ?
- (ग) व्यतिकरण और विवर्तन पैटर्नों के बीच दो अन्तर लिखिए।

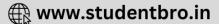
अथवा

 (ग) दो विद्यार्थी एक 10 m ऊँची कक्ष विभाजक दीवार द्वारा 7 m के अंतर पर हैं । यदि ध्वनि और प्रकाश दोनों प्रकार की तरंगें वस्तु के किनारों पर मुड़ सकती हैं, तो फिर भी वे विद्यार्थी एक-दूसरे को देख नहीं पाते यद्यपि वे आपस में आसानी से वार्तालाप किस प्रकार कर पाते हैं ?

2

1

1


2

5

55/3/2

Page 20 of 23

- (b) (i) Define electric potential at a point and write its SI unit.
 - (ii) Two capacitors are connected in series. Derive an expression of the equivalent capacitance of the combination.
 - (iii) Two point charges + q and q are located at points (3a, 0) and
 (0, 4a) respectively in x-y plane. A third charge Q is kept at the origin. Find the value of Q, in terms of q and a, so that the electrostatic potential energy of the system is zero.

SECTION E

34. Diffraction of light is bending of light around the corners of an object whose size is comparable with the wavelength of light. Diffraction actually defines the limits of ray optics. This limit for optical instruments is set by the wavelength of light. An experimental arrangement is set up to observe the diffraction pattern due to a single slit.

Answer the following questions based on the above :

- (a) How will the width of central maximum be affected if the wavelength of light is increased ?
- (b) Under what condition is the first minimum obtained ?
- (c) Write two points of difference between interference and diffraction patterns.

OR

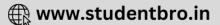
(c) Two students are separated by a 7 m partition wall in a room 10 m high. If both light and sound waves can bend around obstacles, how is it that the students are unable to see each other even though they can converse easily ?

2

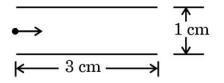
1

1

2


5

Page 21 of 23


CLICK HERE

>>

P.T.O.

35. आरेख में दर्शाए अनुसार दो पट्टिकाओं के बीच के प्रदेश में कोई इलेक्ट्रॉन पुन्ज क्षैतिजत: 3 × 10⁷ m/s के वेग से गतिमान है । इन पट्टिकाओं के बीच कोई उपयुक्त विभवान्तर अनुप्रयुक्त किया गया है ताकि इलेक्ट्रॉन पुन्ज निचली पट्टिका के किनारे से ठीक-ठीक टकराए ।

उपर्युक्त के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) किनारे से टकराने में कोई इलेक्ट्रॉन कितना समय लेगा ?
- (ख) इलेक्ट्रॉन के पथ की आकृति क्या है और क्यों ?
- (ग) अनुप्रयुक्त विभवान्तर ज्ञात कीजिए।

अथवा

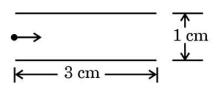
(ग) पट्टिकाओं के बीच के प्रदेश में उस चुम्बकीय क्षेत्र के परिमाण और दिशा को ज्ञात कीजिए जिसे इलेक्ट्रॉन पुन्ज को बिना विक्षेपित हुए सीधे जाने के लिए उत्पन्न किया जाना चाहिए।

2

1

1

2


Page 22 of 23

Get More Learning Materials Here : 💶 🥣 🧲

35. A beam of electrons moving horizontally with a velocity of 3×10^7 m/s enters a region between two plates as shown in the figure. A suitable potential difference is applied across the plates such that the electron beam just strikes the edge of the lower plate.

Answer the following questions based on the above :

- (a) How long does an electron take to strike the edge ? 1
- (b) What is the shape of the path followed by the electron and why?
- (c) Find the potential difference applied.

OR

(c) Find the magnitude and direction of the magnetic field which should be created in the space between the plates so that the electron beam goes straight undeviated. 1

2

CLICK HERE

>>

🕀 www.studentbro.in

Get More Learning Materials Here : 🏬

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2023 SUBJECT NAME PHYSICS (PAPER CODE 55/3/2)

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
0	understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to
	public in any manner could lead to derailment of the examination system and affect
	the life and future of millions of candidates. Sharing this policy/document to
	anyone, publishing in any magazine and printing in News Paper/Website etc may
	invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not
	be done according to one's own interpretation or any other consideration. Marking
	Scheme should be strictly adhered to and religiously followed. However, while
	evaluating, answers which are based on latest information or knowledge and/or are
	innovative, they may be assessed for their correctness otherwise and due marks be
	awarded to them. In class-X, while evaluating two competency-based questions,
	please try to understand given answer and even if reply is not from marking scheme
	but correct competency is enumerated by the candidate, due marks should be
	awarded.
4	The Marking scheme carries only suggested value points for the answers
	These are in the nature of Guidelines only and do not constitute the complete answer. The
	students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each
5	evaluator on the first day, to ensure that evaluation has been carried out as per the
	instructions given in the Marking Scheme. If there is any variation, the same should be
	zero after delibration and discussion. The remaining answer books meant for evaluation
	shall be given only after ensuring that there is no significant variation in the marking of
	individual evaluators.
6	Evaluators will mark(\checkmark) wherever answer is correct. For wrong answer CROSS 'X" be
	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that
	answer is correct and no marks are awarded. This is most common mistake which
	evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks
	awarded for different parts of the question should then be totaled up and written in the left-
	hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
•	encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note " Extra Question ".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
10	once.
11	A full scale of marks _0-70(example 0 to 80/70/60/50/40/30 marks as given in
	Question Paper) has to be used. Please do not hesitate to award full marks if the answer
L	

Get More Learning Materials Here :

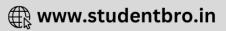
	deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the " Guidelines for spot Evaluation " before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

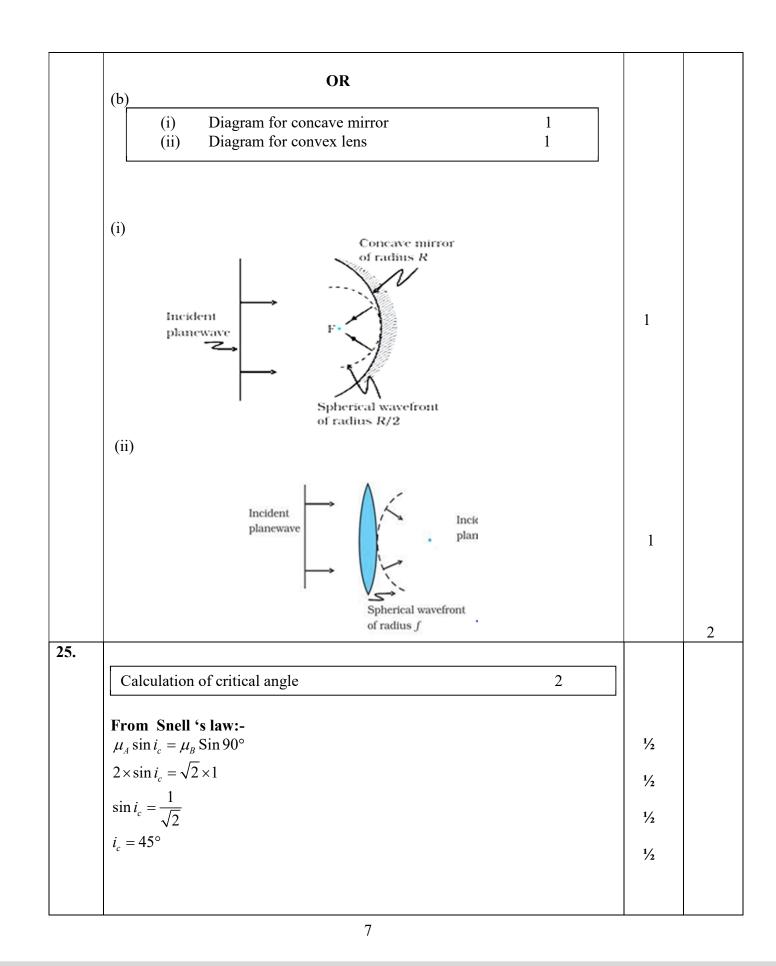
	MARKING SCHEME: PHYSICS(042) Code: 55/3/2			
Q.No.	VALUE POINTS/EXPECTED ANSWERS	Marks	Total Marks	
	SECTION A			
1.	(a) $\frac{V_o}{\sqrt{2}}$	1	1	
2.	(b) $\frac{9}{5}$	1	1	
3.	(c) $5 \times 10^9 \mathrm{m}^{-3}$	1	1	
4.	(d) $1.0 \times 10^{-7} \text{ Cm}^{-1}$	1	1	
5.	(d) Infinite	1	1	
6.	(b) 0.51 eV	1	1	
7.	(a) Increase	1	1	
8.	(b) $m^2 V^{-1} s^{-1}$	1	1	
9.	(b) inductor decreases and the capacitor increases.	1	1	
10.	(c) τ α I	1	1	
11.	(c) I αA^2	1	1	
12.	(c) H.R. Hertz	1	1	
13.	$(c)\frac{2}{3}E$	1	1	
14.	(b) twice	1	1	
15.	(c) 0 a r	1	1	
16.	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion(A)	1	1	
17.	(c) Assertion (A) is true, but Reason (R) is false.	1	1	
18.	(d) Assertion (A) is false & Reason(R) is also false.	1	1	
	SECTION B			
19.	Effect on width of depletion layer with justification in case of(i) Forward Bias(ii) Reverse Bias $\frac{1}{2} + \frac{1}{2}$			

	(i) Forward Bias- Decreases	1/2	
	The direction of the applied voltage (V) is opposite to the built-in potential V_o	1/2	
	(ii) Reverse Bias- Increases	1/2	
	The direction of the applied voltage (V) is same as the built-in potential V_a	1/2	
			2
20.			2
20.	Explanation of property 1		
	Difference between half wave and full wave rectifier. 1		
		1	
	pn-junction conducts in forward bias.	1	
	Alternatively:-pn-junction is a uni-directional device.		
	The half-wave rectifier gives output only for half of the input cycle .The full-		
	wave rectifier gives output for both the halves of the input cycles.	1	
	Alternatively:-If output waveform of both the rectifiers shown		
	diagrammatically, then full credit to be given.		2
21.	(a)		
	Graph of binding energy per nucleon as a function of mass number A 1 Explanation 1		
	$\sum_{1^{10}} \sum_{1^{10}} \sum_{1^{10}$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		1	
	$\tilde{\Xi}$ 0 0 50 100 150 200 250		
	Mass number (A)		
	Explanation:-Nuclear forces are short range & show saturation, while the		
	electrostatic force are neither short range nor show any saturation. Hence for heavier nuclei ($\Delta > 170$) the electrostatic force of repulsion becomes	1	
	heavier nuclei (A>170) the electrostatic force of repulsion becomes predominant, decreasing the binding energy per nucleon.		
	Alternatively:-As the size of the nucleus increases, the nucleus becomes		
	unstable.		
	Note: No deduction of marks if values of elements are not shown in the graph.		
			L

Get More Learning Materials Here : 📕

	OR		
	(b)		
	Expression for radius of the n th orbit in a hydrogen atom 2		
	$\frac{mv^2}{r_n} = \frac{kq^2}{r_n^2} = \frac{e^2}{4\pi \epsilon_o r_n^2} - \dots -(1)$	1/2	
	$r_n = \frac{nh}{2\pi}$ $mvr_n = \frac{nh}{2\pi}$ (2)	1/2	
	$\frac{mvr_n - \frac{1}{2\pi}}{\text{Using equation (1) \&(2)}}$		
		1	
	$r_n = \frac{n^2 h^2 4\pi \varepsilon_o}{m(2\pi)^2 e^2} = 0.53 \text{ x } 10^{-10} \text{ m}^2 \text{ m}$	-	2
22.			
	Definition of Displacement Current1Difference1		
	Displacement current: It is the current that arises due to the rate of change of electric field/flux.	1	
	Alternatively:- $I_d = \varepsilon_0 \left(\frac{d\phi_E}{dt} \right)$		
	Alternatively: The term with units of current to explain the continuity of current in a region.		
	Difference: Displacement current is due to change in electric flux. Conduction current is due to flow of electrons. Alternatively:	1	
	$ \begin{aligned} I_d &= \varepsilon_0 \left(\frac{d\phi_E}{dt} \right) \\ I_c &= \frac{dq}{dt} \end{aligned} $		2
			2
	5		

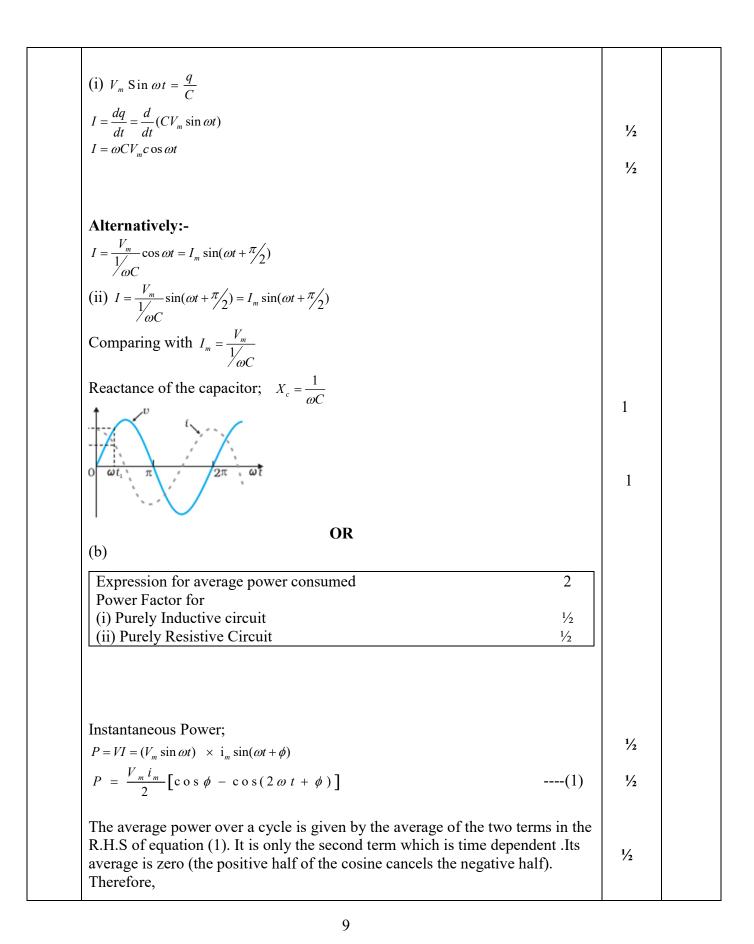




23.	Proving that the circular loop will experience larger torque. 2		
	Let the length of the wire be <i>l</i> .		
	For square loop; $l = 4a \Rightarrow a = \frac{l}{4}$		
	Area of square loop = $a^2 = \frac{l^2}{16}$ (i)	1/2	
	For Circular loop; $l = 2\pi r \Rightarrow r = \frac{l}{2\pi}$		
	Area of circular loop(A _c) = $\pi r^2 = \frac{l^2}{4\pi}$ (ii)	1/2	
	Torque acting on the loop $(\tau) \alpha A$	1/2	
	$\therefore A_c > A_s \therefore \tau_c > \tau_s$	1/2	2
24.			2
24.	(a) Statement of Huygen's Principle 1 Explanation 1		
	Statement: Each point of the wavefront is the source of secondary disturbance in all directions.	1/2	
	Common tangent to all the secondary wavelets gives new position of the	1/2	
	wavefront. Explanation: Light energy cannot travel in backward direction. Alternatively:	1	
	It was an adhoc assumption . Alternatively:		
	For back wave: $I = \frac{1}{2}(1 + \cos \theta)$ at $\theta = 180^{\circ}$; contribution is zero.		
	Alternatively: Amplitude of secondary wavelets is maximum in forward direction and zero in backward in direction.		
	Note: If any other relevant explanation given, give full credit.		

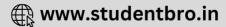
Get More Learning Materials Here : 📕

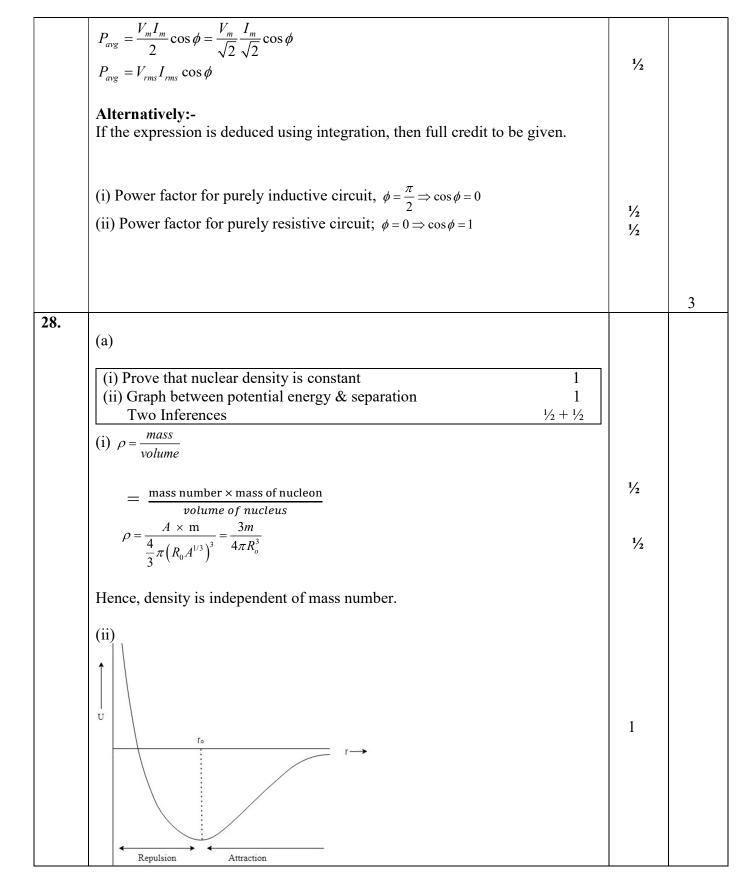
Get More Learning Materials Here :

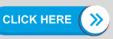

Regional www.studentbro.in

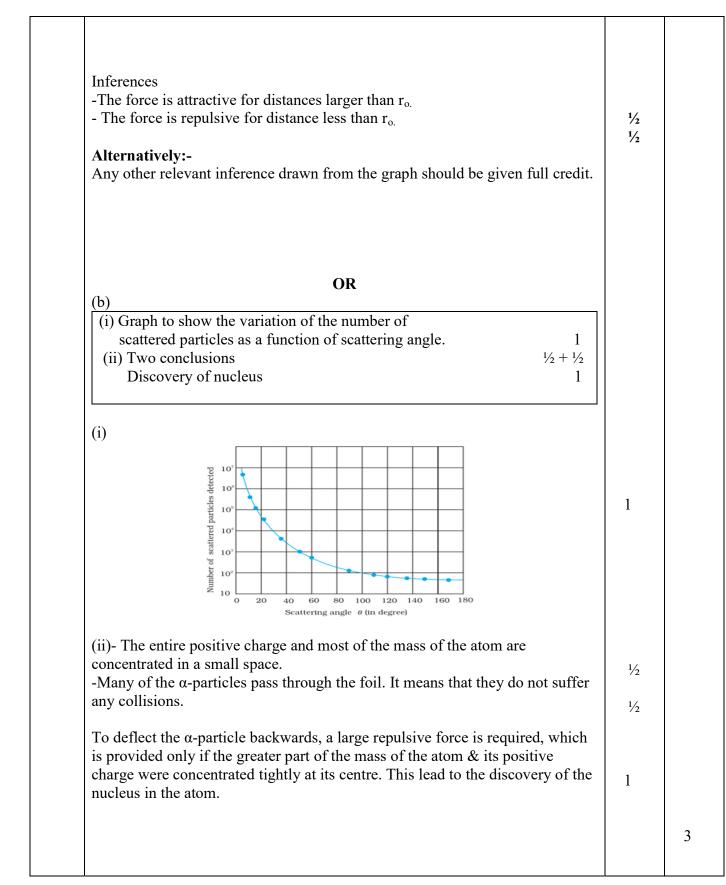
	Alternatively:		
		1	
	$\sin i_c = \frac{1}{{}^B \mu_A}$	1/2	
	$\sin i_c = \frac{1}{\sqrt{2}}$	/2	
	$\int_{i_c}^{\sqrt{2}} i_c = 45^o$	1/2	2
	SECTION C		2
26.			
	(a) Graph1(b) Calculation of energy & de-Broglie Wavelength1+1		
	(a)		
	↑ I.		
		1	
		1	
	$\vee \longrightarrow$		
	(b) Energy acquired = qV_o	1/2	
	(b) Energy acquired – q_{V_o}	/2	
	$=1.6\times10^{-19}\times400$		
	$= 6.4 \times 10^{-17} \text{ J} = 400 \text{ eV}$	1/2	
	-0.4×10 J $-400 eV$		
	$\lambda = \frac{h}{\sqrt{2mK}}$	1/2	
	$\sqrt{2mK}$		
	$\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 6.4 \times 10^{-17}}}$		
	$\lambda = 0.6 \text{ k} 10^{-10} \text{m} = 0.6145 \text{ Ao}$	1/2	
		, 2	3
27			
27.	(a)		
	(i) Expression for current 1		
	(ii) Reactance of the capacitor 1		
	Graph of i versus ωt 1		

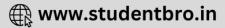
Get More Learning Materials Here : 📕

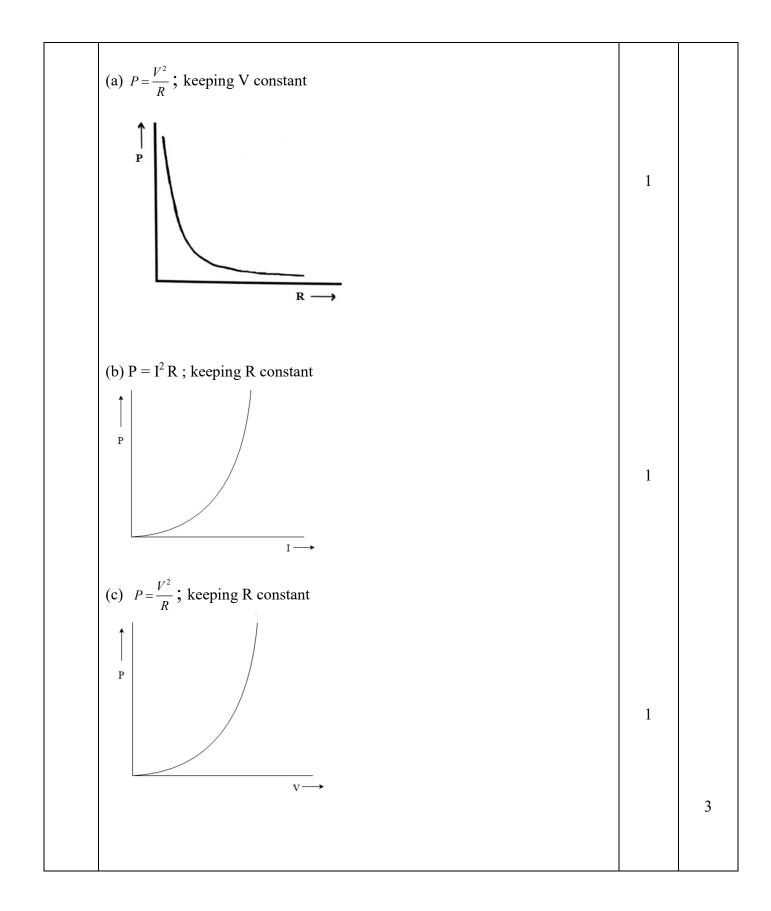

8


r www.studentbro.in

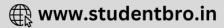



Get More Learning Materials Here : 💻

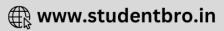


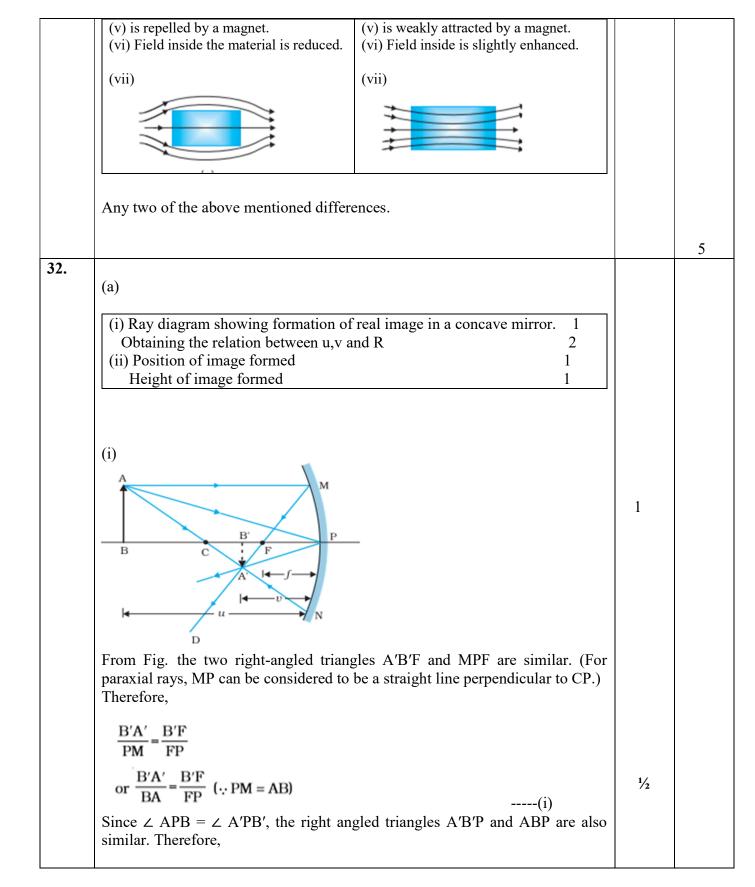


Get More Learning Materials Here : **_**



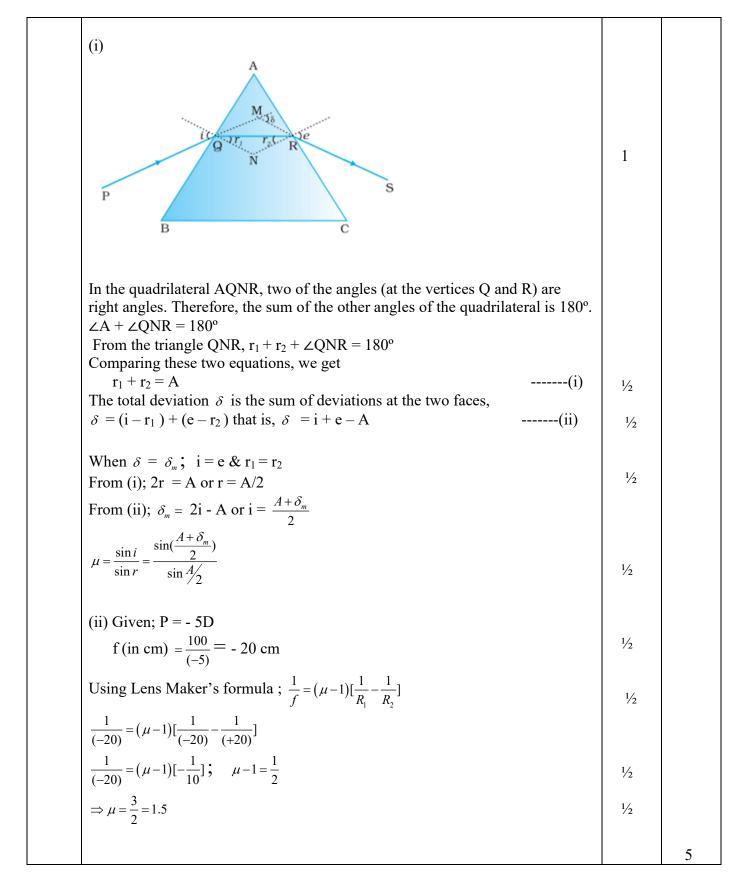
29.	Induced Emf2Induced Current1		
	$\phi_{B} = \vec{B} \cdot \vec{A} = BA \cos 0^{\circ}$	1/2	
	$\varphi_{_B} = D \bullet A = DA \cos \theta$ $= (5t^2 + 2t + 10) \times (25 \times 10^{-2} \times 20 \times 10^{-2})$		
	$ \varepsilon = \left -\frac{d\phi_{\scriptscriptstyle B}}{dt} \right $		
	$=5 \times 10^{-2} \times (10t + 2)$	1/2	
	At $t = 5$ sec;		
	$\varepsilon = (5 \times 10^{-2}) \times (52)$	1/2	
	$\varepsilon = 2.6$ V	1/2	
	$I = \frac{\varepsilon}{R}$	1/2	
	$=\frac{2.6}{4}$		
	I = 0.65 A	1/2	3
30.	Graph showing variation of power consumed by the resistor as a function		5
	of:		
	(a) R, keeping V constant1(b) I, keeping R constant1		
	(c) V, keeping R constant 1		


	SECTION D	
1.	(a)	
	(i) For a moving coil galvanometer	
	Principle 1	
	Working 1	
	Reason it cannot be used as such 1	
	(ii) Reason for radial field 1	
	How radial field is achieved 1	
	(i) Principle – When a rectangular loop carrying current I is placed in a uniform magnetic field, it experiences a torque.	1
	Working:-	
	When a current flows through the coil of a galvanometer, a torque acts on it.	
	$\tau = NiAB\sin\theta$	
	For radial magnetic field; $\sin \theta = 1$	
	The spring provides a counter or restoring toqrue $k\phi$.	
	$k\phi = NiAB$	
	In equilibrium; $\phi = \left(\frac{NAB}{k}\right)i$	1
	Galvanometer cannot be used as such to measure current because: -It has large resistance and hence will change the value of current in the circuit. -It is a sensitive device. (Any one of the above)	1
	(ii) The magnetic field is made radial in a moving coil galvanometer so that	
	(ii) The magnetic here is made relation in a meeting congruent sector is and the magnetic dipole moment (\vec{m}) is always perpendicular to the magnetic	
		1
	field (\vec{B}) Hence, $\sin \theta = 1$ always	
	Alternatively: The magnetic field is made radial in a moving coil galvanometer to make the scale linear.	
	It is achieved by using curved magnetic poles.	1
	Alternatively:-By using soft iron cylindrical core.	
	OR (b)	
	(i) Derivation of expression for magnetic field	
	on the axis of a current carrying loop. 3	
	(ii) Two differences between	
	diamagnetic and paramagnetic substance. 1+1	



(i)			
Y			
$d\mathbf{I} \qquad \mathbf{r} \qquad d\mathbf{B}_{1} \qquad \mathbf{dB}_{2} \qquad \mathbf{dB}_{3} \qquad \mathbf{dB}_{4} \qquad \mathbf{dB}_{5} \qquad \mathbf$		1⁄2	
$dB = \frac{\mu_0}{4\pi} \frac{I d\mathbf{l} \times \mathbf{r} }{r^3}$			
$dB = \frac{1}{4\pi} \frac{1}{r^3}$		17	
$\mu_{\circ}idl\sin 90^{\circ}$		1/2	
$=\frac{\mu_o i dl \sin 90^o}{4\pi \left(x^2+R^2\right)}$		1/2	
dB_{\perp} cancels out.		72	
Net B = $\int dB_x = \int dB \cos \theta$			
$= rac{\mu_o}{4\pi} \int rac{idl}{\left(x^2 + R^2 ight)} imes \; rac{R}{\left(x^2 + R^2 ight)^{1/2}}$		1/2	
$= \frac{\mu_o iR}{4\pi \left(x^2 + R^2\right)^{3/2}} \int dl$			
$= \frac{\mu_o i R}{(1 - \mu_o)^{3/2}} (2\pi R)$			
$4\pi (x^- + K^-)$		1⁄2	
$= \frac{\mu_o iR}{4\pi (x^2 + R^2)^{3/2}} (2\pi R)$ $\mathbf{B} = B_x \hat{\mathbf{i}} = \frac{\mu_0 I R^2}{2 (x^2 + R^2)^{3/2}} \hat{\mathbf{i}}$			
		1/2	
(ii) Differences			
	Paramagnetic Materials		
	(i) Susceptibility is a small positive number.(slightly greater than zero.)		
(ii) Relative permeability is between 0	(ii) Relative permeability is slightly	1+1	
	greater than 1. (iii) $\mu > \mu_o$		
(iv) Tendency to move from stronger to	(iv) Tendency to move from region of		
weaker part of external magnetism.	weak to strong magnetic field.		

Get More Learning Materials Here : 📕



$\frac{B'A'}{BA} = \frac{B'P}{BP} $ (ii)	1/	
(ii)	1/2	
Comparing equations (i) and (ii)		
Comparing equations (i) and (ii)		
$\frac{B'F}{FP} = \frac{B'P - FP}{FP} = \frac{B'P}{BP}$ (iii)	17	
(iii)	1/2	
B' P = -v, FP = -f, BP = -u;		
Using these in Eq.(iii) we get $\frac{1}{v} + \frac{1}{u} = \frac{1}{f} = \frac{2}{R}$	1/2	
Alternatively:- If the result derived by any other method, full credit to be	72	
given.		
(ii) For lens: $\begin{bmatrix} 1 & 1 \\ -1 \end{bmatrix}$		
(ii) For lens: $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1/2	
u = -5m; f = +1m		
1 1 1		
$\frac{1}{v} - \frac{1}{-5} = \frac{1}{(+1)}$		
$\Rightarrow \mathbf{v} = \frac{5}{4}m = 1.25m$	1/2	
$m = \frac{I}{O} = \frac{v}{u} = \frac{\left(+\frac{5}{4}\right)}{(-5)}$		
$m = \frac{1}{O} = \frac{1}{u} = \frac{1}{(-5)}$	1/2	
$I = (-0.25) \times (1.8)$		
I = -0.45 m	1/2	
OR (b)		
(i) Ray diagram showing refraction of a ray of light through a rectangular glass prism. 1		
Obtaining the relation between $\mu, A \otimes \delta_m$ 2		
(ii) Finding Refractive Index of material of the lens. 2		

Get More Learning Materials Here : 🗾

🕀 www.studentbro.in

(a) (i) Definition & SI Unit of Electric Flux $\frac{1}{2} + \frac{1}{2}$]
(ii) Deriving the expression for electric field due to a	
uniformly charged infinite plane sheet.2(iii) Net charge enclosed by the cube2	
	1
(i) $\phi = \vec{E} \cdot \vec{A}$	1/
Alternatively: Electric flux is the number of electric field lines passing	1/2 5
through an area normally.	
S.I. unit of electric flux Nm ² /C or V-m.	1/2
(ii)	
Surface z charge density σ	
	17
	1/2
From Gauss's law:- $\phi = \oint \vec{E} \cdot \vec{dA} = \frac{q}{\varepsilon_o}$	
$2EA = \frac{\sigma A}{\sigma A}$	1/2
$2EA = \frac{1}{\varepsilon_o}$	1/2
$E = \frac{\sigma}{2\varepsilon_o}$	1/
Alternatively: If the shape of the Gaussian surface is taken cylindrical,	1/2
full credit to be given.	
(iii)	
$\phi_L = Eds \cos 180^\circ = -Eds$	1/2
$=-BL^2$	
$\phi_R = Eds\cos 0^\circ = Eds$	1/2
$= (AL+B)L^2 = AL^3 + BL^2$	
Net flux = $\phi_L + \phi_R$	
$=(AL^3+BL^2)-BL^2$	17
Net flux = $AL^3 = \frac{q}{\epsilon_a}$	1/2
$=>q=AL^3 \in Q$	1/2

Get More Learning Materials Here : 📕

r www.studentbro.in

OR	
(b)	
(i) Definitions & S.I. Unit of electric potential $\frac{1}{2} + \frac{1}{2}$ (ii) Derivation of expression of Equivalent capacitance2(iii) Calculation of Electrostatic Potential Energy2	
(i) Electrical Potential – Electrostatic potential at any point in a region with electrostatic field is the work done in bringing a unit positive charge (without acceleration) from infinity to that point.	1/2
Alternatively:-	
$V = \frac{Work \ Done}{q}$	
$V = -\int \vec{E} \cdot \vec{dl}$ S.I. unit of electrostatic potential is volt.	1/2
Alternatively:- S.I. unit is J/C.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2
$V = V_1 + V_2 = \frac{Q}{C_1} + \frac{Q}{C_2}$	1/2
$\frac{Q}{Ceq.} = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right)$	1⁄2
$\frac{1}{Ceq.} = \frac{1}{C_1} + \frac{1}{C_2}$	1/2
(iii)	
Potential energy of the system = $K\left[\frac{Q(-q)}{4a} + \frac{Qq}{3a} - \frac{q^2}{5a}\right]$	1/2
Potential energy of the system $= 0$	

	$\Rightarrow K \left[\frac{-Qq}{4a} + \frac{Qq}{3a} - \frac{q^2}{5a} \right] = 0$ $\Rightarrow \frac{-Q}{4} + \frac{Q}{3} - \frac{q}{5} = 0$		1⁄2	
	$\Rightarrow +\frac{Q}{12} - \frac{q}{5} = 0$ $\Rightarrow Q = + \frac{12q}{5}$		1	5
	SECTI	ION E		
34.	(a) Effect on width of central maximum (b) Condition for first minimum (c) Differences between interference a OR Reason	1		
	(a) $\beta_o \alpha \lambda$ β_o will increase with increase in wav (b) When path difference $a\theta = \lambda$ or at	velength.	1	
	(c) Differences Interference Pattern	Diffraction Pattern		
	 (i) All the maxima are equally spaced. (ii)The dark fringe is having zero intensity. (iii) All the maxima are of the same intensity. (iv) 		1+1	
	Alternatively:- -It is obtained by the superposition of	It is obtained by the superposition		

	two waves originating from two sources/slits.		
	Any two of the above differences. OR		
	(c) The opening (slit) is 3m; which is of the order of the wavelength of sound waves whereas it is very large compare to the wavelength of light.Hence, sound can bend around the obstacle while light cannot.	2	4
35.			
	(a) Time taken by the electron to strike the edge.1(b) Shape of path followed by the electron and it's reason $\frac{1}{2} + \frac{1}{2}$ (c) Potential Difference applied2OR2		
	(c) Magnitude and Direction of magnetic field 1+1		
	(a) Electron strikes the edge after travelling 3 cm horizontally (along x-axis). $S_x = v_x \times t$ $3 \times 10^{-2} = (3 \times 10^7) \times t$ $t = 10^{-9} s$		
	$t = 10^{-9} \text{ s}$	1/2	
	 (b) Shape of the path is parabola. Reason: Force/acceleration is in a fixed direction perpendicular to the initial velocity. 	1/2 1/2	
	(c) Along y-direction		
	$S_y = u_y t + \frac{1}{2} a_y t^2$		
	$-0.5 \times 10^{-2} = 0 + \frac{1}{2}a_{y}(10^{-9})^{2}$ $a_{y} = -10^{16} \text{ m/s}^{2}$	1/2	
	Magnitude of acceleration $(a_y) = \frac{eE}{m} = \frac{e}{m} \left(\frac{V}{l}\right)$	1/2	
	$V = \frac{10^{16} \times 9.1 \times 10^{-31} \times 1 \times 10^{-2}}{1.6 \times 10^{-19}}$	1/2	
	V = 568.75 V	1/2	
	(c) $ qE = qvB $; $B = \frac{E}{v} = (\frac{ma_y}{e})(\frac{1}{v})$	1/2	
	Along y-direction		

r www.studentbro.in

$S_y = u_y t + \frac{1}{2} a_y t^2$	1/2	
$-0.5 \times 10^{-2} = 0 + \frac{1}{2}a_{y}(10^{-9})^{2}$ $a_{y} = -10^{16} \text{ m/s}^{2}$		
$a_{y} = -10 \text{ m/s}$ $B = \left(\frac{9.1 \times 10^{-31} \times 10^{16}}{1.6 \times 10^{-19}}\right) \times \left(\frac{1}{3 \times 10^{7}}\right)$		
	1	
$B = 1.9 \times 10^{-3} T$	I	4
Direction of magnetic field will be out of the plane of the paper.		

Get More Learning Materials Here : 📕

